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ABSTRACT
Topic modeling has been proved to be an effective method
for exploratory text mining. It is a common assumption
of most topic models that a document is generated from a
mixture of topics. In real-world scenarios, individual docu-
ments usually concentrate on several salient topics instead
of covering a wide variety of topics. A real topic also adopts
a narrow range of terms instead of a wide coverage of the
vocabulary. Understanding this sparsity of information is
especially important for analyzing user-generated Web con-
tent and social media, which are featured as extremely short
posts and condensed discussions.
In this paper, we propose a dual-sparse topic model that

addresses the sparsity in both the topic mixtures and the
word usage. By applying a “Spike and Slab” prior to de-
couple the sparsity and smoothness of the document-topic
and topic-word distributions, we allow individual documents
to select a few focused topics and a topic to select focused
terms, respectively. Experiments on different genres of large
corpora demonstrate that the dual-sparse topic model out-
performs both classical topic models and existing sparsity-
enhanced topic models. This improvement is especially no-
table on collections of short documents.
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1. INTRODUCTION
We are living in an era of information revolution where

social media is gradually substituting the role of traditional
media. Online social network sites such as Facebook and
Twitter have emerged as new mediums of information dif-
fusion, allowing their users to create and spread informa-
tion much more effectively than before. According to re-
cent statistics, more than 500 million tweets are posted by
Twitter users on a daily basis 1. This huge volume of user-
generated content, normally in the form of very short docu-
ments, contains rich and useful information that can hardly
be found in traditional information sources [31]. As a result,
discovering meaningful knowledge from the large-scale user-
generated short text in social media has been recognized as
a challenging and promising research problem.

Statistical topic models have been proved to be effective
tools for exploratory analysis of the overload of text content
[4]. It is the common assumption of most classical topic
models (e.g., [13, 6, 5]) that a document is generated from
a mixture of topics and a topic samples words from a dis-
tribution over the vocabulary. Once estimated, the topic
proportions of a document (or a collection of documents)
can be used as a high-level representation of the semantics
of that document (or collection), and the top-ranked words
in a topic-word distribution can be used to interpret the
semantics of that topic. By doing this, a topic model can
provide an effective organization of latent semantics to the
unstructured text collection.

While topic models have enjoyed broad success on tradi-
tional media, the experience on social media is mixed. Un-
like carefully edited articles, user-generated content in social
media is characterized with an extremely short document
length, a very large vocabulary, and a broad range of top-
ics. Consequentially, the word co-occurrence information at
individual document level becomes much sparser, inevitably
compromising the performance of computational methods
that utilize this co-occurrence information, including topic

1https://blog.twitter.com/2013/new-tweets-per-second-
record-and-how
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modeling [19, 24]. As a result, classical topic models usu-
ally yield suboptimal performance when applied ‘as is’ to
short documents. Heuristic treatments such as document
pooling [19] or contextualization [24] have to be applied to
improve the performance of topic modeling on short text,
both of which require the availability of additional context
information (e.g., authors) beyond individual documents.
Does this imply a curse of topic modeling on short text?

What if we are dealing with a collection of de-identified
documents where it is hard to link individual documents
through context variables (a common requirement of privacy-
preserving data analysis, e.g., analyzing patient records)?
We do notice that although there is generally a large num-
ber of topics spanning in the collection, an individual post
usually concentrates on only a small number of topics. Sim-
ilarly, a user-generated topic usually has a very skewed dis-
tribution of words, i.e., a topic usually focuses on a narrow
range of words instead of a wide coverage of the vocabulary.
Understanding this skewness in both the topic mixtures

and the word distributions is especially important for ana-
lyzing the content in short text. This inspires us to recon-
sider the assumptions of classical topic models. Instead of
letting the topic mixtures and the word distributions navi-
gate freely in the simplex, can we tell the model that each
document focuses on a few topics, and each topic focuses on
a few words? When there are many topics in a document,
the sparse information is too little to be shared. But maybe
it is enough to be split by only a few of them?
With this motivation, we address the skewness, or the

sparsity of both the topic mixtures and the word distribu-
tions in topic modeling. This is achieved by a dual-sparse
topic model, which applies a “Spike and Slab” prior that
decouples the sparsity and the smoothness of the document-
topic and topic-word distributions. By doing this, we allow
individual documents to select only a few focused topics and
also each topic to select its focused terms. In order to avoid
the ill-posed definitions of the topic mixtures and the word
distributions under the direct application of the “Spike and
Slab” prior, we further introduce a weak smoothing prior
along with a smoothing prior, to ensure the probabilistic
distributions in the generative process are well-defined.
Unlike existing sparsity-enhanced topic models, the infer-

ence of our model can be done through a novel inference
procedure called zero-order collapsed variational Bayes in-
ference (CVB0), thus allows the model to efficiently deal
with large-scale corpora. Experimental results on three real-
world data sets demonstrate that the dual-sparse topic model
outperforms both classical topic models and the state-of-
the-art sparsity-enhanced topic models. The improvement
is especially notable on collections of short documents.
The rest of the paper is organized as follows. We discuss

related work in Section 2. In Section 3, we formally define
the problem of dual-sparsity in short text. The dual-sparse
topic model and the inference procedure are introduced in
Section 4. We present the experimental results in Section 5
and conclude this work in Section 6.

2. RELATED WORK
To the best of our knowledge, this is the first study that

simultaneously mines focused topics and focused terms from
short text. This is achieved through addressing the dual-
sparsity of topic mixtures and topic-word distributions in

topic modeling. Our work is related to the following lines of
literature.

2.1 Classical Probabilistic Topic Models
Classical probabilistic topic models like the probabilistic

latent semantic analysis (PLSA) [13] and the latent Dirichlet
allocation (LDA) [6] have been widely adopted in text min-
ing. Without utilizing auxiliary information such as higher-
level context, the classical topic models generally regard each
document as an admixture of topics where each topic is de-
fined as a unigram distribution over all the terms in the vo-
cabulary. In practice, the benefit of LDA over PLSA comes
from the smoothing process of the document-topic distri-
butions and the topic-word distributions introduced by the
Dirichlet prior, which thus alleviates the overfitting prob-
lem of PLSA. In order to relax the assumption that the user
knows the number of topics a priori, Blei et al. proposed
a hierarchical topic model utilizing the Chinese Restaurant
Process for the construction of infinite number of topics [5].
These classical models generally lack the ability of directly
controlling the posterior sparsity [11] of the inferred repre-
sentations, thus fail to address the skewness of the topic
mixtures and the word distributions. Indeed, one could
enhance the sparsity by approaching the Dirichlet prior in
LDA to zero. However, such a cruel process also inevitably
results in a weakened effect of smoothing. Previous work
has shown that simply applying a small Dirichlet prior is
not only ineffective in controlling the posterior sparsity [32],
but also results in compromised, less smooth document-topic
and topic-term distributions [27]. In other words, a weak-
ened Dirichlet smoothing yields sparsity only because of the
scarcity of information. As a result, when applied to short
documents, classical topic models are usually unable to per-
form as well as for professional documents, even when the
Dirichlet priors are optimized.

2.2 Sparsity-Enhanced Topic Models
Recently, there have been efforts to address the problem

of sparsity in topic distributions. These sparsity-enhanced
topic models aim at extracting focused topics or focused
terms in text by imposing sparsity regularization [27, 8, 29,
23, 30, 1, 32, 14, 28, 17]. The practices of these models can
be summarized under two camps: (1) non-probabilistic cod-
ing or matrix factorization, and (2) probabilistic graphical
topic model using specific prior or infinite stochastic process.

In the first category, coding is used to represent the coeffi-
cients of corresponding topical basis in topic space to model
the generative process of words. For example, the non-
probabilistic sparse coding [32] and the non-negative matrix
factorization (NMF) [17, 14] provide a feasible framework
to impose various sparsity constraints directly, which are at
the expense of losing the probabilistic representations of top-
ics. Regularized Latent Semantic Index (RLSI) [28] imposes
sparsity regularization into the framework of LSI. However,
the intrinsic limitation of LSI (compared to LDA) has pre-
dicted the compromised performance as the number of topics
increases. One of the state-of-the-art methods in this cate-
gory is the recently proposed Sparse Topical Coding (STC)
[32], which learns both focused topics and focused terms.
The method relies on the ability of a Laplacian prior to in-
duce sparsity into the topic-word associations and automat-
ically learns the sparse representations of the vocabulary.
STC performs significantly better than previous models in-
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cluding the classical LDA, NMF, and RegLDA [23], even
when the number of topics is large. However, STC does not
achieve the sparse topic representations of documents, i.e.,
the structure of focused topics.
The second category of sparsity-enhanced topic models ex-

tends the graphical structure of classical topic models. This
camp of models is inspired by the subtle effect of the varia-
tion of the Dirichlet prior on the topic models [26]. In order
to achieve sparse representation in the document-topic and
topic-term distributions, Wang and Blei [27] and Williamson
et al. [29, 30] introduced a Spike and Slab prior and the In-
dian Buffet Process to model the sparsity in finite and infi-
nite latent topic structures of text. Similarly, Chen et al. [8]
proposed a context focused topic model (cFTM) by using the
Hierarchy Beta Process. Even though Indian Buffet Process
and Hierarchy Beta are theoretically sound, the inference
procedures for these models are much more complicated and
intractable on large document collections. These models
typically extract focused topics or focused terms indepen-
dently, rather than considering the dual-sparsity of topics
per document and terms per topic. The closest work to ours
is IBP-LDA proposed by Archambeau et al. [1] which tries
to model the sparse representation of document-topic and
topic-term distributions via Indian Buffet Process. How-
ever, over complicated inference procedure has limited its
capability of handling large-scale document collections.

2.3 The “Spike and Slab” Prior
It is noticeable that although Wang and Blei only address

the sparsity of topic-word distributions (as we address both
sparse topic representations for documents and sparse term
representations for topics), the “Spike and Slab” prior they
introduce to topic modeling is related to the key practice of
our treatment [27]. The “Spike and Slab” prior [15] is a well
established method in mathematics, which has been used
in real world applications since it can successfully decouple
the sparsity and smoothness of a probabilistic distribution
[9, 3]. Specifically, by using auxiliary Bernoulli variables
to represent the “on” and “off” of particular variables, the
model can determine if the corresponding variables appear
or not. In topic modeling, this indicates whether a topic is
“selected”by the document (i.e., a focused topic), or whether
a term is “selected” by a topic (i.e., a focused term). Similar
ideas appear in other models like noisy-OR model [22] and
aspect Bernoulli model [16].
When directly applied to topic models, however, the“Spike

and Slab” prior may cause the probabilistic distributions to
be ill-defined. Indeed, such a process introduces never ap-
pearing terms to the distribution of a topic in Wang and
Blei [27], which not only imposes unnecessary difficulty into
the inference procedure but also compromises the quality
of topics. In our work, we define a weak smoothing prior
along with a smoothing prior to avoid the ill-posed defini-
tions of distributions by the direct application of the “Spike
and Slab” prior. Our model thus results in a much sim-
pler inference procedure and a better performance on large
collections of documents.

3. PROBLEM FORMULATION
In this section, we formally define the problem of Dual-

Sparse Topic Modeling.

Let D = {wd}|D|
d=1 be a collection of documents, where

wd = (wd
1 , w

d
2 , . . . , w

d
|V |) is a vector of terms representing

the textual content of document d. wd
i denotes the frequency

of the i-th term in document d, and |V | is the size of the
vocabulary.

Definition 1. (Topic, Topic Representation, Topic

Modeling) A topic �φ in a given collection D is defined
as a multinomial distribution over the vocabulary V , i.e.,

{p(w|�φ)}w∈V . It is a common assumption that there are K

topics in D. The topic representation of a document d, �θd,
is defined as a multinomial distribution over K topics, i.e.,

{p( �φk|�θd)}k=1,...,K . The general task of topic modeling aims

to find K salient topics {�φk}k=1,...,K from D and to find the
topic representation of each document.

Most classical probabilistic topic models adopt the Dirich-
let prior for both the topics and the topic representation
of documents, which are first proposed in LDA [6]. That

is, �θd ∼ Dirichlet(�α) and �φk ∼ Dirichlet(�β). In practice,
the Dirichlet prior smooths the topic mixture in individual
documents and the word distribution of each topic, which
alleviates the overfitting problem of PLSA especially when
the number of topics and the size of vocabulary increase.
However, the Dirichlet prior itself does not formally con-
trol the posterior sparsity of the inferred representations as
discussed before. Weakening the Dirichlet prior increases
the sparsity at the expense of the smoothness of the docu-
ment/topic representations. Specifically, for any term r and
a topic k, φkr = 0 is totally possible since each topic typ-
ically focuses on a subset of terms rather than covering all
of them. Similarly, a document also focuses on a few topics
instead of covering all the topics in the collection. These
topics and terms are intuitively interpreted as focused topics
of a document and focused terms of a topic. Before giving
a formal definition of focused topics and terms, we define
some auxiliary variables allowing each document to select
its representative topics, and a topic to select its related
terms.

Definition 2. (Topic Selector, Term Selector) For
d ∈ {1, . . . , |D|}, k ∈ {1, . . . ,K}, a topic selector αdk is a
binary variable that indicates whether topic k is relevant
to document d. αdk is sampled from Bernoulli(ad), where
ad is a Bernoulli parameter. Similarly, for k ∈ {1, . . . ,K},
r ∈ {1, . . . , |V |}, a term selector βkr indicates if term r is
included in topic k. βkr is sampled from Bernoulli(bk), where
bk is another Bernoulli parameter.

Definition 3. (Smoothing Prior, Weak Smoothing
Prior) The smoothing prior is a pair of Dirichlet hyperpa-
rameters π and γ that are used to smooth those topics and
terms that are selected by the topic selector and the term
selector, respectively. The weak smoothing prior is another
pair of Dirichlet hyperparameters π̄ and γ̄ that are used to
smooth those topics and terms that are not appearing in the
corresponding document and topic (i.e., not selected by the
topic selector and the term selector), respectively.

The topic selector and term selector are referred to as
“spikes,” while smoothing prior and weak smoothing prior
correspond to “slabs” in statistics. In this way, we are able
to decouple the sparsity and smoothness of topic proportion
and topic distribution by applying a “Spike and Slab” prior.
The application of the“Spike and Slab”prior to topic model-
ing is however not trivial. The Bernoulli selectors may cause
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the multinomial distributions to be ill-defined, where some
topics never appear in the collection, and some terms never
appear in the topics. Indeed, this problem can be alleviated
by the “slab,” however too little “slabbing” brings little ef-
fect of smoothing while too much “slabbing” compromises
the effect of “spiking” (sparsity).
We propose a treatment to separate the smoothing prior

and weak smoothing prior, which is a key contribution of
the proposed model. The topics and terms selected by the
“spike” are smoothed using the stronger smoothing prior
π and γ, which successfully avoid the “less smooth” prob-
lem as in [27]. Topics and terms which are not selected by
the spike are smoothed through the weak smoothing prior
π̄ and γ̄. Since π̄ � π and γ̄ � γ, we can easily main-
tain the effect of sparsity while also fixing the ill-definition
of the distributions. By doing this, the sparse representa-
tion achieved is not induced from data scarcity [32] since we
have selected topics and terms by “spike” before smoothing.
Clearly, through this treatment the enhancement of sparsity
no longer compromises the effect of smoothing in the docu-
ment/topic representations. More details will be discussed
in Section 4.1.
With the definition of topic selectors and term selectors,

we are now able to formally define focused topics and focused
terms in topic modeling.

Definition 4. (Focused Topic, Focused Term) Topic
k is a focused topic of document d if the topic selector αdk =
1, and term r is a focused term of topic k if the term selector
βkr = 1. For document d, Ad = {k : αdk = 1} is defined
as the set of its focused topics, and for topic k, Bk = {r :
βkr = 1} is defined as the set of its focused terms.

Clearly, the set of focused topics provides a sparse rep-
resentation of the semantics of a document, and the set of
focused terms provides a sparse representation of the seman-
tics of a topic.

Definition 5. (Dual-Sparsity) The sparsity of a document-
topic distribution exists if |Ad| < K, which is defined as

sparsity(d) � 1 − |Ad|
K

. The sparsity of a topic-term distri-

bution exists if |Bk| < |V |, which is defined as sparsity(k) �
1 − |Bk|

|V | . The Dual-Sparsity denotes the joint effect when

both types of sparsity exist.

Given a collection of documents D, the vocabulary V ,
and the predefined number of topics K, the major tasks of
Dual-Sparse Topic Modeling can be defined as to:

1. determine the set of focused topics and focused terms

by estimating the topic selector �α and term selector �β;

2. further infer the Bernoulli parameter �a and�b to present
dual-sparsity quantitatively;

3. learn the sparse word representation of topics �φ;

4. learn the sparse topic representation of documents �θ.
All the notations used in this paper are summarized in

Table 1.

4. LEARNING THE DUAL-SPARSITY
Dual-sparsity is commonly observed in short text, such

as user-generated Web content and social media. It brings
great challenges to the classical topic models in learning the
sparse representations of documents and topics. To address

Table 1: Variables and Notations
Notation Meaning

K number of topics
V vocabulary
D collection of short documents
Nd the length of document d
αdk topic selector

AΘ
d number of focused topics for document d

ad probability of topic selector
s, t parameters of ad

π topic smoothing prior
π̄ weak topic smoothing prior
�θd document-topic distribution

BΦ
k number of focused terms for topic k
Z topic assignments
bk probability of term selector
x, y parameters of bk
βkr term selector
γ term smoothing prior
γ̄ weak term smoothing prior
�φk topic distribution

nk
d,r

frequency of term r assigned to topic
k in document d

W words
I[·] indicator function

this problem, we propose to modify the machinery of tradi-
tional topic models by imposing the sparsity. Importantly,
we need to take the feasibility of the inference procedure
into consideration in designing the new model.

Zhu and Xing [32] have shown it is unlikely to control the
posterior sparsity effectively even if we impose weak Dirich-
let smoothing prior to all topics. Such a method also results
in less smooth expected document-topic and topic-term dis-
tributions [27]. One needs a better solution to decouple the
sparsity and smoothness of document and topic representa-
tions in the graphical structure.

We propose a new topic model, namedDual-Sparse Topic
Model (DsparseTM), to find the focused topics and fo-
cused terms. This model is largely inspired by the “Spike
and Slab”prior [15]. The most important difference between
DsparseTM and prior work is that we successfully avoid
the ill-posed singularity of document-topic and topic-term
distributions by the utilization of a smoothing prior and a
weak smoothing prior. Specifically, a pair of weak smooth-
ing prior π̄ and γ̄ is proposed to deal with the problem

that Dirichlet(π�αd) and Dirichlet(γ�βk) are ill-posed when

�αd = �βk = 0.

4.1 The Dual-Sparse Topic Model
The key idea of the dual-sparse topic model is to re-

strict the size of the topic simplex and the word simplex
over Dirichlet distributions in order to induce sparsity. This
is done through auxiliary Bernoulli variables. Specifically,
Bernoulli variables indicating “on” and “off” of given vari-
ables are used to determine whether a topic is a focused
topic, or a term is a focused term. Smoothing priors are
introduced to smooth focused topics and focused terms.

DsparseTM is depicted in Figure 1 and the probabilistic
generative process is presented as follows:

For each topic k ∈ {1, 2, . . . ,K}:
1. bk ∼ Beta(x, y);

2. For each term r ∈ {1, 2, . . . , |V |}:

(a) the term selector βkr ∼ Bernoulli(bk), �βk = {βkr}|V |
r=1;
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(b) the set of focused terms: Bk = {r : βkr = 1};
(c) the topic distribution �φk ∼ Dirichlet(γ�βk + γ̄�1);

For document d ∈ {1, 2, . . . , |D|}:
1. ad ∼ Beta(s, t);

2. For each topic k ∈ {1, 2, . . . ,K}:
(a) the topic selector αdk ∼ Bernoulli(ad), �αd = {αdk}Kk=1;

(b) the set of focused topics: Ad = {k : αdk = 1};
3. the topic proportion �θd ∼ Dirichlet(π�αd + π̄�1);

4. For each word i ∈ {1, 2, . . . , Nd}:
(a) sample zdi from Multinomial({�θk : k ∈ Ad});
(b) sample wdi from Multinomial({�φzd,i : zdi ∈ Bk});

ar

s

α z

θ

ππ̄

w

βφ

γ γ̄

b

x

y

Nd

|D|

K|V|

Figure 1: The graphical model of DsparseTM

We make the following remarks:
Smoothing Priors: It is necessary to understand the ra-
tionale behind the weak smoothing prior π̄, γ̄ along with
the stronger smoothing prior π, γ. Previous work [6] has
found it reasonable to use Dirichlet distribution to define
both document-topic and topic-term distributions. How-
ever, Dirichlet distributions will be ill-posed as the Dirichlet
hyperparameter approaches zero. Indeed, Dirichlet(π�αd) or

Dirichlet(γ�βk) are not well-defined when �αd = 0 or �βd = 0.
In order to address this nuisance, Wang and Blei [27] de-

fine βk,|V |+1 = I[
|V |∑
r=1

βkr = 0] to ensure that Dirichlet(γ�βk)

is well-defined. In other words, they assume that there is a
|V | + 1-th term which never appears in documents. When
it comes to the Dirichlet distribution of topic proportions,
however, to define a never appearing topic will lead to high
computational cost. In this paper, we choose to introduce

weak smoothing prior π̄ and γ̄ so that Dirichlet(γ�βk + γ̄�1)

and Dirichlet(π�αd+π̄�1) are well defined even when all �αd = 0

and �βk = 0.
After defining well-posed document-topic and topic-word

distributions, the model further samples z and w from the
multinomial distributions restricted on Ad = {k : αdk = 1}
and Bk = {r : βkr = 1}. Since π̄ � π and γ̄ � γ, this
does not contradict the definition of a multinomial distribu-
tion. Indeed, we can get

∑
k∈Ad

θdk = 1 and
∑

r∈Bk

φkr = 1 in

numerical sense when π̄ = 10−7 and γ̄ = 10−7.

Generative process: After sampling the Bernoulli param-
eter bk from Beta(x, y) for the k-th topic, we can generate
different binary variables βkr for all the terms in vocabulary.
Whether a term r is a focused term of topic k is determined
by the value of βkr. Then we can sample the topic-term

distribution �φk from Dirichlet(γ�βk + γ̄�1).
For document d, the corresponding Bernoulli parameter

ad sampled from Beta(s, t) will generate a series of binary

αdk to select subset of focused topics. �θd ∼ Dirichlet(π�αd +

π̄�1) shows the admixture proportion of document d over all
topics, and we only choose θdk when αdk = 1. Indeed, it is
reasonable to assume that topics with αdk = 0 do not appear
in document d since their smoothing prior π̄ is so weak that
π̄ � π. In other word, Ad = {k : αdk = 1} is defined as a
set of focused topics.

Finally we sample z from Multinomial({�θk : k ∈ Ad}).
The number of words in d, Nd can be notated as a summa-
tion of nk

d,(.)I[k ∈ Ad]. In this case, topics never appearing
in document d do not contribute to Nd. Similar idea moti-
vates the definition of nk

(.),rI[r ∈ Bk]. In the end, we sample

a word w from Multinomial({�φzd,i : zdi ∈ Bk}).

4.2 Inference
Since the posterior inference is intractable for DsparseTM,

we need to find an algorithm for posterior inference that is
both effective and efficient for large document collections.
We adopt the well-known Zero-Order Collapsed Varia-
tional Bayes Inference Algorithm (CVB0) [2] for this
task. Indeed, the convergence of CVB0 has been theoreti-
cally proven to be stable [21], and its practical performance
is better than the Collapsed Gibbs Sampling Algorithm [12]
and the Collapsed Variational Bayes Inference Algorithm
(CVB) [25].

Integrating out document-topic distribution �θ, topic-term

distribution �φ, and Bernoulli parameters �a, �b analytically,
we get the remaining variables for inference: topic assign-

ment z, topic selector �α, and term selector �β. Applying the
framework of CVB0, we get the updated equations for vari-

ational parameters of z, �α and �β:

Variational Bernoulli distribution for �α:

âjk =
a1
jk

a1
jk + a0

jk

ã
1
jk =(s + A

Θ¬jk
j )Γ(N

Θ
jk + π + π̄)

B(π + Kπ̄ + πA
Θ¬jk
j , N

Θ
j + πA

Θ¬jk
j + Kπ̄)

ã
0
jk =(t + K − 1 − A

Θ¬jk
j )Γ(π + π̄)

B(Kπ̄ + πA
Θ¬jk
j , N

Θ
j + π + πA

Θ¬jk
j + Kπ̄)

(1)

where AΘ
j =

∑
k′

âjk′ , NΘ
jk =

∑
i′

γi′jk, N
Θ
j =

∑
i′k′

γi′jk′ and

¬jk means without αjk.

Variational Bernoulli distribution for �β:

b̂kr =
b1kr

b1kr + b0kr

b̃
1
kr =(x + B

Φ¬kr
k )Γ(N

Φ
kr + γ + γ̄)

B(γ + |V |γ̄ + γB
Φ¬kr
k , N

Φ
k + γB

Φ¬kr
k + |V |γ̄)

b̃
0
kr =(y + |V | − 1 − B

Φ¬kr
k )Γ(γ + γ̄)

B(|V |γ̄ + γB
Φ¬kr
k , N

Φ
k + γ + γB

Φ¬kr
k + |V |γ̄)

(2)
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where BΦ
k =

∑
r′

b̂kr′ , NΦ
kr =

∑
i′j′

I[wi′j′ = r]γi′j′k, NΦ
k =

∑
i′j′

γi′j′k and ¬kr means without βkr.

Variational Multinomial distribution for z:

γijk = q̂(zij = k)

∝
NΦ¬ij

kwij
+ γb̂kwi,j

+ γ̄

NΦ¬ij
k + γBΦ

k + |V |γ̄
(N

Θ¬ij
jk + πâjk + π̄)

(3)

Please refer to the Appendix for the details of derivation.

5. EXPERIMENT
In this section, we investigate the performance of DsparseTM

on three large collections of documents. We are particularly
interested in the effectiveness of DsparseTM on short text.
The objectives of the experiments include: (1) a quanti-
tative evaluation of the quality of extracted topics; (2) a
quantitative evaluation of the sparse topic representations
of documents; and (3) interpreting focused topics, focused
terms, and dual-sparsity discovered by DsparseTM.

5.1 Data Sets
We adopt three different genres of real-world data sets

for our experiments. We design text classification tasks to
evaluate the performance of the sparse topic representations
of documents. To do this, we select document collections
with explicit class labels (articles from 20 Newsgroups 2 and
titles of papers from selected computer science conferences).
In order to evaluate the performance of the proposed model
on short text collections, we select titles of scientific papers
and microblogs (tweets) from Twitter.com. Stop words are
removed from each data set according to a standard list of
stop words 3.

• DBLP. Titles of scientific papers are good examples
of short documents. We collect titles of all confer-
ence papers from the DBLP database 4 in three re-
search areas: (1) database/data mining/information
retrieval (DB/DM/IR), (2) theoretical computer sci-
ence (TCS), and (3) computer networks/systems. This
data set contains 40,190 short documents and 9,393
unique words, with labels of 22 different conferences.

• 20 Newsgroups. This data set, denoted as 20NG,
contains 18,774 newsgroup documents labeled in 20
categories, with a vocabulary of 60,698 unique words.

• Twitter. We sample a collection of 1,119,464 tweets
posted in June 2009 from the Twitter data set released
by the Stanford Network Analysis Project 5, denoted
as Twitter. After removing words that appeared less
than 15 times, we yield a vocabulary of 32,641 words.
In addition, we sample another collection with 13,080
users who have posted at least 50 tweets, resulting in
1,110,303 tweets. The second collection of tweets can
be converted into “pseudo-documents” by author-wise
pooling, which is denoted as Twitter-A.

The statistics of the data sets are summarized in Table 2.

2http://qwone.com/∼jason/20Newsgroups/
3http://jmlr.org/papers/volume5/lewis04a/a11-smart-
stop-list/english.stop
4http://www.informatik.uni-trier.de/∼ley/db/
5http://snap.stanford.edu/data/twitter7.html

Table 2: Statistics of the data sets

Data set # Documents
Vocabulary Avg doc len

size by words
DBLP 40,190 9,393 5.7
20NG 18,774 60,698 114.8

Twitter 1,119,464 32,641 4.9
Twitter-A 13,080 15,952 451.4

5.2 Metrics
Finding an objective metric to compare the quality of

topics is hard. Some commonly used metrics such as the
perplexity or the likelihood of held-out data cannot directly
measure the semantic coherence of the learned topics. Chang
et al. [7] present quantitative methods to measure the top-
ical coherence of the learned topics. They found that the
likelihood of the held-out data is not always a good indi-
cator of topic coherence. Recently, measuring the semantic
coherence of the learned topics has received increasing at-
tention [20, 24]. We adopt the same topic coherence metric
for the comparison of topic models.
Topic Coherence. In [20], Newman et al. propose to use
the point-wise mutual information (PMI) to measure the se-
mantic coherence of topics. For a given topic T , we choose
the top-N most probable words w1, w2, . . . , wN , and calcu-
late the average relatedness of each pair of these words as
the PMI score:

PMI-Score(T ) =
2

N(N − 1)

∑

1≤i<j≤N

log
p(wi, wj)

p(wi)p(wj)
, (4)

where p(wi, wj) is the joint probability of words wi and
wj co-occurring in the same document, while p(wi) is the
marginal probability of word wi appearing in a document.
These probabilities are computed from a much larger corpus.
We set N = 15 in our analysis.
Classification Accuracy. One of the most important prod-
ucts of topic modeling is the topic proportion of each doc-
ument, which provides a latent semantic representation of
that document. Such a low-dimensional representation can
be used in external text mining tasks such as text classifi-
cation [18]. We evaluate the effectiveness of the topic rep-
resentation of documents through the accuracy of a text
classification task on the document collection D:

Accuracy(D) =
1

|D|
∑

d∈D

I[Labeld = Predictiond], (5)

where I[·] is the indicator function, Labeld and Predictiond

are the true label and the predicted label of document d in
a text classification task, respectively.
Dual-Sparsity Ratio. Dual-sparsity refers to the joint
sparsity of document-topic and topic-term distributions. The
sparsity ratio of a document-topic distribution is defined as
the expectation of sparsity(d) conditioned on Bernoulli pa-
rameter ad, and the sparsity ratio of a topic-term distri-
bution is similarly defined as the expectation of sparsity(k)
conditioned on Bernoulli parameter bk, i.e.,

Sparsity-ratio(d) � E[sparsity(d)] = 1− ad

Sparsity-ratio(k) � E[sparsity(k)] = 1− bk
(6)

The Dual-Sparsity Ratio provides a direct measurement of
the sparsity of the topic representation of documents and
the word representation of topics.
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5.3 Candidate Models for Comparison
We compare DsparseTM with the following models.

• LDA. The classical topic model LDA can induce spar-
sity as the Dirichlet prior approaches zero. We use the
LDA package 6 with variational bayes inference, which
automatically optimizes the Dirichlet hyperparameter
α by using the Newton-Raphson method [6].

• Sparse Topical Coding (STC). STC is a recently
published sparsity-enhanced topic model which has been
proven to perform better than many existing models,
including NMF and RegLDA [32]. We use the im-
plementation of STC with 	2-norm provided by the
authors 7.

• Mixture of Unigrams. It is also interesting to in-
clude the following extreme scenario into comparison.
The mixture of unigrams [6] assumes that each docu-
ment is generated by only one topic z which generates
N words independently from the conditional multino-
mial p(w|z). The probability of a document is:

p(w) =
∑

z

p(z)

N∏

n=1

p(wn|z)

Clearly, this simple model forces the topic representa-
tion of a document to adopt the largest sparsity. One
may imagine that for some certain collections of short
documents, it may be a reasonable assumption that
each document only contains one topic.

Note that the inclusion of the state-of-the-art sparsity-
enhanced topic model (i.e., STC) has allowed us to omit
other existing models from comparison. The comparison
between STC and other models is reported in [32]. Some re-
lated models such as sparseTM [27] are also excluded from
the comparison because of their nonparametric machinery.
Specifically, sparseTM can learn the number of topics via
Hierarchical Dirichlet Process. Furthermore, it only pro-
vides a sparse word representation of topics but no sparse
topic representation of documents. Therefore, it is hard to
compare DsparseTM and sparseTM fairly.
For the proposed DsparseTM, we sample the Bernoulli

parameters �a and�b from uniform Beta distribution Beta(1,1)
one by one and simply fix π̄ = γ̄ = 10−7, although these
hyperparameters may be further optimized.

5.4 Experimental Results

5.4.1 Topic coherence
The PMI scores of all candidate methods are presented in

Table 3. The numbers of topics extracted from DBLP, 20
Newsgroups and Twitter are 15, 120 and 200, respectively.

Table 3: Topic coherence (PMI) on four data sets
DBLP 20NG Twitter Twitter-A

Number of topics 15 120 200 200
DsparseTM 0.871 1.621 1.051 1.939

LDA 0.622 1.336 0.562 1.757
STC 0.088 1.515 0.378 1.192

Mixture of unigrams 0.532 0.691 1.121 0.823
Conference topic 0.586 - - -

6http://www.cs.princeton.edu/∼blei/lda-c/
7http://www.ml-thu.net/∼jun/stc.shtml

We make the following remarks:
DBLP. The proposed DsparseTM model yields the highest
PMI score, followed by LDA and the mixture of unigrams, all
of which outperform STC by a large margin. DBLP is an in-
teresting data set where the documents (titles of papers) are
short but still cover multiple topics. How good are the topic
coherence scores? We provide a reference coherence score by
aggregating the documents from each conference and treat-
ing that as a “topic.” Clearly, this gives us a “naturally”
defined topic that is interpretable by human. The average
PMI score of the 22 conference based topics is 0.586. It is
interesting to see that both DsparseTM and LDA achieve
higher PMI scores than the conference based topics.

Even though the hyperparameters of LDA are optimized,
it is still outperformed by DsparseTM. This is reasonable
as short documents fail to provide sufficient statistics of
word co-occurrence. The mixture of unigrams does not per-
form well, because although the titles of scientific papers are
short, they often still cover more than one topic. The poor
performance of STC possibly indicates that their sparsity-
induced prior is not able to detect serious document-topic
sparsity in DBLP titles. Note that STC is a non-probabilistic
topic model. It is also likely that losing the probabilistic rep-
resentation compromises the interpretability of topics.
20 Newsgroups. Again DsparseTM achieves the best topic
coherence, followed by STC and LDA, and all outperform
the mixture of unigrams by a large margin. As documents
in 20NG are typically longer and may contain more topics,
the performance of the mixture of unigrams suffers.

Both DsparseTM and STC harvest more coherence topics
than LDA, which provides a strong evidence of the exis-
tence of dual-sparsity in 20 Newsgroups. It is nice to see
that DsparseTM performs well on both short documents
and long documents. To further investigate the behavior of
DsparseTM on short text, we vary the length of documents
in 20NG by randomly sampling words from the original doc-
uments. The topic coherence scores on these collections of
shortened documents are reported in Figure 2 8.

6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2

avg doc len by w ords

0 .5

1 .0
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2 .5
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M -U

Figure 2: PMI on shortened 20NG documents.
DsparseTM achieves high topic coherence that is ro-
bust to the variation of document length.

Interestingly, when the length of documents increases, the
performance of STC and the mixture of unigrams drops
and the performance of LDA increases. The performance
of DsparseTM remains high and stable. This promising re-
sult indicates that DsparseTM successfully adapts to the
sparsity of the data, and is not affected by the insufficient
observations of word co-occurrence.

Note that STC achieves the best performance when there
are only 8 words in a document. The reason that STC
works well with extremely insufficient word co-occurrence

8Because of the much shorter documents, we learned 30 top-
ics instead of 120 in this experiment.
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may attribute to its use of the sparsity-induced prior, which
is indeed simpler than the use of weak smoothing prior and
smoothing prior in DsparseTM.
Twitter. It is surprising that the simplest model, the mix-
ture of unigrams, performs the best on the collection of
tweets. One could imagine that the topic proportions in
short tweets are close to the extreme case where each tweet
contains only one topic (compared to DBLP titles that cover
multiple topics). Even on this data set, DsparseTM achieves
a very close PMI score, which significantly outperforms LDA
as well as STC.
Twitter-A. It is also interesting to investigate how much
benefit the availability of auxiliary context information can
bring to topic models. Indeed, when individual tweets writ-
ten by the same author are pooled into“pseudo-documents,”
the performance of LDA improved significantly. Note that
the mixture of unigrams, the best performer on short tweets,
suffered from a drop of performance after pooling. This is
because although it is a fair assumption that a tweet contains
only one topic, a twitter user may still write about multiple
topics. After author-wise pooling, DsparseTM still achieves
the best performance, which once again demonstrates the
effectiveness of the proposed model on both short and long
documents.

5.4.2 Classification accuracy
The second task is to evaluate the effectiveness of the topic

representation of documents. To do this, we perform text
classification tasks on DBLP and 20NG, using the topic pro-
portions of a document as the feature representation of that
document, as an alternative to the conventional represen-
tation using bag of words. The latent semantic representa-
tion of documents enhances the classification performance
when the training data is rare [18]. We use the 3 areas of
DBLP conferences and the 20 newsgroups as classification
categories, respectively.
On DBLP, we use 80% documents for training and 20%

for testing. On the 20NG data set, we use 60% documents
for training and 40% for testing, which is the same config-
uration as in [32]. With the topic feature representation,
the documents are classified by a multi-class SVM [10]. A
5-fold cross-validation on the training data is used to select
the optimal parameters of SVM. To better understand the
behavior of topic representations in classification, we vary
the ratio of labeled documents by sampling from the train-
ing set (from 0.2% to 100%). Besides the topic models, we
also include a baseline which represents documents using the
conventional term frequencies (TF).
Figure 3 reports the classification accuracy under differ-

ent sampling ratios of training data. We can observe that
DsparseTM consistently outperforms LDA, STC, and the
mixture of unigrams in most settings and on both data sets.
When there are sufficient training examples, the simple rep-
resentation using term frequencies outperforms all the latent
topic representations. Topic representation of documents
plays an important role when the training examples are rare,
where keyword features are likely to overfit the classifier to
the data. This result is consistent with the conclusion in
literature [18].
Shortened 20NG Documents. Like in the analysis of
topic coherence, we also repeat this experiment by vary-
ing the length of 20 Newsgroups documents. Here we only
report the setting with 1% sample of training documents.

The classification results are reported in Figure 4. Clearly,
DsparseTM consistently outperforms the other candidate
models including the TF representation when the average
document length varies among 8, 12, 16, and 20 words.
Again, this demonstrates that DsparseTM can successfully
model dual-sparsity in text, which is robust to the variation
of document lengths. This indicates that DsparseTM is po-
tentially very useful in text classification tasks with short
documents and limited training data.

5.4.3 Characters of dual sparse representation
Finally, we present selected focused topics, focused terms,

and dual sparse representations discovered by DsparseTM.
Tables 4 and 5 present the average sparsity ratio of topic

representation for documents in selected categories in DBLP
and 20 Newsgroups, respectively. We also list the most com-
mon focused topics of documents in each category. In Ta-
ble 4, the average sparsity ratio of titles in the DB/DM/IR
area is lower than that of the Theory area and the Network-
ing/System area. This result is reasonable since DB/DM/IR
covers a wider range of topics. Similarly, in Table 5, it
is reasonable to see that the sparsity of topic mixture of
“comp.graphics” and “comp.os.ms-windows.misc” is higher
than that of“soc.religion.christian”and“talk.politics.mideast”
since the number of topics related to computer technology
is smaller than that related to religion and politics. Com-
pared with DBLP, the sparsity of topic representations in 20
Newsgroups is lower. This reassures our observation that a
newsgroup document covers a wider range of topics than a
title of scientific paper.

Table 6: Focused terms and sparsity ratio of selected
topics on DBLP

T7
sparsity: 0.9210 # Focused terms: 124
detection social-network analysis network data online

T9
sparsity: 0.9010 # Focused terms: 144
algorithms approximation problems trees parallel algorithm

T15
sparsity: 0.8873 # Focused terms: 185
web search information semantic content user mining

Table 7: Focused terms and sparsity ratio of selected
topics on 20NG

T72
sparsity: 0.9536 # Focused terms: 288
god religion atheists exist atheism evidence people

T63
sparsity: 0.9540 # Focused terms: 214
space nasa earth orbit shuttle mission lunar spacecraft

T45
sparsity: 0.9661 # Focused terms: 125
pain doctor day disease medical patients treatment blood

Tables 6 and 7 present selected topics, with the sparsity
ratio of the corresponding topic-word distribution as well as
focused terms. In DBLP, topic 7 representing “social net-
work analysis” focuses on a smaller set of terms than topic
15, a broader research topic on Web mining. In contrast to
the higher sparsity of topic representations of documents,
the sparsity of word distributions of topics in DBLP is lower
than that in 20 Newsgroups. A possible explanation is that
the vocabulary of social media is much larger than that of
academic titles.

Tables 8 and 9 show the most frequent terms in each cat-
egory and the topics which select these terms as focused
terms. Firstly, we can observe that some words (e.g., “jpeg”
and “wireless”) are selected as focused terms by very few
topics, indicating a narrow usage of those terms. Instead,
some words (e.g., “system”) are selected as focused terms by
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Figure 3: Classification accuracy on DBLP and 20NG
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Figure 4: Classification accuracy on shortened 20NG documents with 1% training data

Table 4: Focused topics and average sparsity ratio for different DBLP categories
DB/DM/IR TCS Networking/System

Avg. sparsity ratio: 0.9927 Avg. sparsity ratio: 0.9963 Avg. sparsity ratio: 0.9966
T15 T6 T13 T9 T12 T5
web retrieval time algorithms networks networks

search information polynomial approximation control wireless
information search algorithm problems performance sensor
semantic query linear trees analysis mobile
content models computing parallel traffic scheduling
user queries algorithms algorithm atm distributed

mining relevance systems preliminary packet routing
knowledge evaluation computation problem network multihop

many topics, indicating a broad, and even ambiguous usage
of those terms.

Table 8: Most frequent terms of a category, and
most relevant topics on DBLP

DB/DM/IR TCS Networking/System
web mining algorithm complexity network wireless
6 7 1 4 11 1 13 2 8 5
8 11 2 5 12 9 5 9
15 15 3 9 13 10 7 12

Table 9: Most frequent terms of a category, and
most relevant topics on 20NG

comp.graphics comp.os.ms-windows.misc
image graphics jpeg windows system
21 82 21 56 56 21 56 2 28 47 65 85
37 35 60 34 61 9 30 54 67 87
50 37 61 37 76 16 31 56 69 90
56 48 71 47 17 34 60 70 97
58 50 76 50 21 37 61 71 99
71 52 99 52 27 41 63 81 100

One can also observe that there are some topics that select
all the frequent terms in a category as focused terms (under-
lined in Tables 8 and 9, e.g., topic 15 for DB/DM/IR, topic
9 and 13 for TCS, and topic 56 for “comp.graphics”). These
topics are likely to be highly related to that category. Inter-
estingly, these topics also match well with the most common
focused topics of that category (see Tables 4 and 5). This

correlation provides evidence of the existence of the joint ef-
fect of dual-sparsity.

Summary: We have presented comprehensive experiments
using three different genres of text collections, documents
with various lengths and concentrations of topics, and multi-
ple tasks to evaluate the effectiveness of the proposed model
DsparseTM. The proposed model successfully discovers fo-
cused topics, focused terms, and dual-sparsity from data.
The model results in an effective sparse topic representation
of documents and a coherent word representation of topics.
The performance outperforms classical topic models (i.e.,
LDA) and the state-of-the-art sparsity-enhanced topic mod-
els (i.e., STC). The effectiveness is especially significant on
short text.

6. CONCLUSION
In this paper, we address the dual sparsity of the topic rep-

resentation for documents and the word representation for
topics in topic modeling. This problem is especially impor-
tant for analyzing short text such as user-generated content
on the Web.

We propose a novel topic model, DsparseTM, which em-
ploys a “Spike and Slab” process and introduces a smooth-
ing prior and a weak smoothing prior for focused/unfocused
topics and focused/unfocused terms. DsparseTM can effec-
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Table 5: Focused topics and average sparsity ratio for different 20NG categories
comp.graphics comp.os.ms-windows.misc soc.religion.christian talk.politics.mideast

Avg. sparsity ratio: 0.9624 Avg. sparsity ratio: 0.9631 Avg. sparsity ratio: 0.9514 Avg. sparsity ratio: 0.9521
T56 T48 T37 T34 T52 T76 T3 T58 T72 T87 T80 T68
image points ftp windows hp writes god god god israel israeli armenian
color line pub dos printer articles jesus church religion israeli israel turkish
jpeg point version file print zip christ bible athelists arab arab armenians
gif higgins graphics driver font ftp christians jesus exist lebanese true genocide
file find tar system fonts risc christian father atheism peace center turks

format writes software drivers postscript computer law spirit evidence writes policy people
files polygon based problem good files people catholic people arabs questions armenia

images radius subject files windows instruction hell holy existence lebanon jews soviet

tively model the dual sparsity of document-topic and topic-
term distributions and successfully discover focused topics
of a document and focused terms of a topic. The sparse
topic representation provides a nice low-dimensional latent
semantic representation of documents, which is useful in
many applications such as text classification. Experimen-
tal results on a variety of real-world data sets demonstrate
the advantage of DsparseTM over classical topic models and
the state-of-the-art sparsity-enhanced topic models.
Due to its simple but effective model structure and in-

ference procedure, DsparseTM can be integrated with ad-
ditional regularities and/or stochastic online inference pro-
cedures. By doing this, we anticipate that DsparseTM can
scale to handle very large collections of documents. It is also
a natural future direction to optimize the hyperparameters
of DsparseTM, or to investigate its nonparametric counter-
part.
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APPENDIX
Derivations of Zero-Order Collapsed Variational Bayes
Inference
Assuming Θ = {s, t, π, γ, π̄, γ̄, x, y}. We begin with the

joint probability P ( �W, �Z, �α, �β; Θ) by taking the advantages
of conjugate priors to simplify the derivation. All symbols
have been defined in Section 3:

P ( �W, �Z, �α, �β; Θ)

=

∫ ∫ ∫ ∫
p( �W, �Z, �θ, �φ, �α, �β,�a,�b; Θ)d�θd�φd�ad�b

=(

|D|∏
d=1

Nd∏
w=1

p(wd,w; �φzd,w , �β))(
K∏

k=1

p(�φk; γ, γ̄, �βk))(
K∏

k=1

p(�βk; bk))

(

K∏
k=1

p(bk;x, y))(

|D|∏
d=1

Nd∏
w=1

p(zd,w; �θd, �αd))(

|D|∏
d=1

p(�θd;π, π̄, �αd))

(

|D|∏
d=1

p(�αd; ad))(

|D|∏
d=1

p(ad; s, t))d�θd�φd�ad�b

=

K∏
k=1

Γ(γ
|V |∑
r=1

βk,r + |V |γ̄)
|V |∏
r=1

Γ(γβk,r + γ̄)

|V |∏
r=1

Γ(nk
(.),r

I[r ∈ Bk] + γβk,r + γ̄)

Γ(
|V |∑
r=1

(nk
(.),r

I[r ∈ Bk] + γβk,r) + |V |γ̄)

B(x+ 	{1 ≤ r ≤ |V |, βk,r = 1}, y + 	{1 ≤ r ≤ |V |, βk,r = 0})
B(x, y)

|D|∏
d=1

Γ(π
K∑

k=1

αd,k +Kπ̄)

K∏
k=1

Γ(παd,k + π̄)

K∏
k=1

Γ(nk
d,(.)

I[k ∈ Ad] + παd,k + π̄)

Γ(
K∑

k=1
(nk

d,(.)
I[k ∈ Ad] + παd,k) +Kπ̄)

B(s+ 	{1 ≤ k ≤ K,αd,k = 1}, t+ 	{1 ≤ k ≤ K,αd,k = 0})
B(s, t)

Under the framework of collapsed bayes inference frame-
work, the variational distribution and the variational free

energy can be defined as:

q̂(z, α, β) =
∏
ij

q̂(zij |γ̂ij)
∏
jk

q̂(αjk|âjk)
∏
kr

q̂(βkr|b̂kr)

�̂(q̂(z, α, β)) � Eq̂(z,α,β)[− log p(z,w, α, β|Θ)]−H(q̂(z, α, β))

Through minimizing the variational free energy respect to
different variational parameters, we derive the updates for
the variational parameters, âjk,b̂kr and γ̂ij .

Variational Bernoulli distribution for �α: Minimizing
(7) with respect to âjk, we get

âjk = q̂(αjk = 1)

=
exp(Eq̂(z,α¬jk,β)[log p(αjk = 1|α¬jk, z, β : Θ)]∑

m=0,1
exp(Eq̂(z,α¬jk,β)[log p(αjk = m|α¬jk, z, β : Θ)]

Plugging in P ( �W, �Z, �α, �β; Θ), cancelling those appearing in
both numerator and denominator, and applying the Gaus-
sian approximation to the above equation as well as [25], we
can get:

âjk =
a1jk

a1jk + a0jk

ã1jk =(r +AΘ¬jk
j )Γ(NΘ

jk + π + π̄)

B(π +Kπ̄ + πAΘ¬jk
j , NΘ

j + πAΘ¬jk
j +Kπ̄)

ã0jk =(s+K − 1−AΘ¬jk
j )Γ(π + π̄)

B(Kπ̄ + πAΘ¬jk
j , NΘ

j + π + πAΘ¬jk
j +Kπ̄)

where AΘ
j =

∑
k′

αjk′ , NΘ
jk =

∑
i′

γi′jk, N
Θ
j =

∑
i′k′

γi′jk′ and

¬jk means without αjk.

Variational Bernoulli distribution for �β: Similar as cal-
culation above,the update equation for variational parame-
ter b̂kr is:

b̂kr =
b1kr

b1kr + b0kr

b̃1kr =(x+BΦ¬kr
k )Γ(NΦ

kr + γ + γ̄)

B(γ + V γ̄ + γBΦ¬kr
k , NΦ

k + γBΦ¬kr
k + V γ̄)

b̃0kr =(y + V − 1−BΦ¬kr
k )Γ(γ + γ̄)

B(V γ̄ + γBΦ¬kr
k , NΦ

k + γ + γBΦ¬kr
k + V γ̄)

where BΦ
k =

∑
r′

βkr′ , NΦ
kr =

∑
i′j′

I[wi′j′ = r]γi′j′k, NΦ
k =

∑
i′j′

γi′j′k and ¬kr means without βkr.

Variational Multinomial distribution for z:
The same as zero-order collapsed variational bayes inference
(CVB0) for LDA [2], we can directly derive the the distri-
bution to update γijk:

γijk = q̂(zij = k)

∝
NΦ¬ij

kwij
+ γb̂kwi,j

+ γ̄

NΦ¬ij
k + γBΦ

k + V γ̄
(NΘ¬ij

jk + πâjk + π̄)

where all notations have been mentioned before.
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